СИГНАЛЫ С МИНИМАЛЬНОЙ ЭНЕРГИЕЙ ВРЕДНОГО СПЕКТРА

В. А. Котельников

Радиотехника и электроника, 1996, т. 41, №7, с. 773-780

Рассматриваются сигналы, имеющие минимальную энергию составляющих спектра вне заданной полосы частот.

Постановка задачи

Сигнал может начаться лишь после момента времени a, когда было принято решение о его посылке. Поэтому функция времени f(t) = f, выражающая сигнал, должна удовлетворять условию

$$f = 0 \text{ при } t < a. \tag{1}$$

Такая функция, как известно, имеет всегда спектр, простирающийся до бесконечности [1].

Представляет интерес выяснить: какова должна быть f, удовлетворяющая условию (1), чтобы энергия составляющих ее спектра за пределами некоторой полосы частот была бы минимальной, и каков этот минимум. Эта энергия может создавать помехи для сигналов в соседних областях спектра. Ее мы будем называть *вредной* и обозначать $W_{\rm B}$.

Мы будем рассматривать случай, когда вредной энергией считается энергия спектра за пределами полосы $-\Omega$, Ω . Ряд других случаев может быть сведен к нему, если использовать свойства модулированных колебаний. Угловую частоту Ω мы будем называть *граничной частотой*.

При приеме сигнала не всегда можно использовать всю его энергию, так как не всегда можно ждать, когда сигнал полностью затухнет. Поэтому введем понятие энергия полезного участка сигнала. Она будет равна

$$W_{\Pi} = \int_{a}^{b} f^2 dt,$$

где b — момент времени, когда кончается регистрация сигнала для принятия решения о нем.

И, наконец, введем понятие энергия «хвоста» сигнала:

$$W_{\mathrm{x}} = \int\limits_{b}^{\infty} f^2 dt$$

В этой работе мы будем искать f, удовлетворяющую условию (1), для которой при заданном W

$$H_{\rm x} = \frac{W_{\rm x}}{W_{\rm n}} \tag{2}$$

величина

$$H_{\rm B} = \frac{W_{\rm B}}{W_{\rm n}} \tag{3}$$

минимальна.

Такую функцию назовем оптимальным сигналом.

Решение

Для решения этой задачи введем вспомогательную величину

$$H_R = H_{\rm B} + RH_{\rm X},\tag{4}$$

где R — некоторая постоянная, и будем искать такую функцию f, которая обеспечит минимальное возможное значение H_R . Эту функцию мы обозначим \tilde{f} и соответствующие ей величины H_R , $H_{\rm B}$, $H_{\rm X}$ через \tilde{H}_R , $\tilde{H}_{\rm B}$, $\tilde{H}_{\rm X}$.

Очевидно справедливо неравенство

$$H_{\rm B} + RH_{\rm X} \geqslant H_{\rm B} + RH_{\rm X},\tag{5}$$

поскольку \widetilde{H}_R — минимально возможное значение H_R .

Если брать не любые функции f, а лишь те, для которых $H_x = H_x$, то для них на основании (5) будет $H_{\rm B} \ge \widetilde{H}_{\rm B}$.

Таким образом, $\widetilde{H}_{\rm B}$ будет минимально возможным значением $H_{\rm B}$ при условии, что f таково, что $H_{\rm X} = \widetilde{H}_{\rm X}$. Отсюда следует, что f, обеспечивающее минимально возможное значение H_R , будет оптимальным сигналом при условии, что $H_{\rm X} = \widetilde{H}_{\rm X}$. Задаваясь различными значениями R, мы получим серию функций \widetilde{f} , \widetilde{H}_R , $\widetilde{H}_{\rm X}$, $\widetilde{H}_{\rm B}$ и зависимость между ними.

Введем понятие низкочастотная часть функции f и обозначим ее, добавив индекс н. Будем считать

$$f_{\rm H} = \frac{1}{2\pi} \int_{-\Omega}^{\Omega} G(\omega) e^{i\omega t} d\omega, \qquad (6)$$

где

$$G(\omega) = \int_{-\infty}^{\infty} f e^{-i\omega t} dt$$

- спектр функции f.

Отметим, что $f_{\rm H}$ как функция с ограниченным спектром всегда простирается от $-\infty$ до $+\infty$ и если не равна нулю при всех t, может равняться нулю только в отдельных точках [1].

Очевидно

$$W_{\rm B} = \int_{a}^{\infty} f^2 dt - \int_{-\infty}^{\infty} f_{\rm H}^2 dt.$$
(7)

В соответствии с этим и выражениями (2)-(4) будем иметь

$$H_R = \frac{\int\limits_{-\infty}^{\infty} f^2 dt - \int\limits_{-\infty}^{\infty} f_{\scriptscriptstyle \rm H}^2 dt + R \int\limits_{b}^{\infty} f^2 dt}{\int\limits_{a}^{b} f^2 dt}.$$
(8)

Возьмем $f = \tilde{f} + \mu \varphi$, где μ — некоторая постоянная, φ — произвольная функция времени, удовлетворяющая условию (1). Получим

$$H_{R} = \left(\int_{a}^{\infty} (\tilde{f} + \mu\varphi)^{2} dt - \int_{-\infty}^{\infty} (\tilde{f}_{H} + \mu\varphi)^{2} dt + R \int_{b}^{\infty} (\tilde{f} + \mu\varphi)^{2} dt \right) / \left(\int_{a}^{b} (\tilde{f} + \mu\varphi)^{2} dt \right).$$
(9)

Раскрывая это выражение и пренебрегая членами, содержащими μ во второй и более высоких степенях, получим

$$H_R = \frac{A}{B} \left[1 + \frac{2\mu}{A} \left(\int_a^\infty \tilde{f}\varphi \, dt - \int_{-\infty}^\infty \tilde{f}_{\rm H}\varphi_{\rm H} dt + R \int_b^\infty \tilde{f}\varphi \, dt - \frac{A}{B} \int_a^b \tilde{f}\varphi \, dt \right) \right].$$

Здесь A и B — значения числителя и знаменателя выражения (9) при $\mu = 0$.

Преобразуем второй интеграл. В соответствии с теоремой Парсеваля, по которой для действительных функций f(t) и g(t) справедливо выражение

$$\int_{-\infty}^{\infty} f(t)\varphi(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} G_f(\omega)G_{\varphi}^*(\omega)d\omega,$$

где

$$\begin{split} G_f(\omega) &= \int\limits_{-\infty}^{\infty} f(t) e^{-i\omega t} dt, \\ G_{\varphi}^*(\omega) &= \int\limits_{-\infty}^{\infty} \varphi(t) e^{i\omega t} dt, \end{split}$$

и принимая во внимание, что $f_{\rm H}$ имеет спектр в пределах $-\Omega,\,\Omega$ и что приt < a, по условию, $\varphi = 0$ получим

$$\int_{-\infty}^{\infty} \widetilde{f}_{\mathrm{H}} \varphi_{\mathrm{H}} dt = \int_{-\infty}^{\infty} \widetilde{f}_{\mathrm{H}} \varphi \, dt = \int_{a}^{\infty} \widetilde{f}_{\mathrm{H}} \varphi \, dt.$$

Разбивая интервал интегрирования на участки, компонуя их и учитывая, что $A/B=\widetilde{H}_R,$ получим

$$H_{R} = \widetilde{H}_{R} \left\{ 1 + \frac{2\mu}{A} \left[\int_{a}^{b} (\widetilde{f} - \widetilde{f}_{H} - \widetilde{H}_{R}\widetilde{f})\varphi \, dt + \int_{b}^{\infty} (\widetilde{f} - \widetilde{f}_{H} + R\widetilde{f})\varphi \, dt \right] \right\}.$$
(10)

Если скобки под интегралами не равны нулю на участках интегрирования, то всегда можно выбрать φ так, что будет $H_R < \widetilde{H}_R$, а это противоречит условию, что \widetilde{H}_R минимально возможное значение H_R . Таким образом, должно быть

1)
$$\tilde{f} = 0$$
 на участке $-\infty$, a ; по условию (1);
2) $\tilde{f} = \frac{1}{1 - \tilde{H}_R} \tilde{f}_{\rm H}$ на участке a, b ;
3) $\tilde{f} = \frac{1}{1 + R} \tilde{f}_{\rm H}$ на участке b, ∞ .
(11)

Величину \widetilde{H}_R можно найти, если воспользоваться уравнением (8), выразив в нем \widetilde{f} через $\widetilde{f}_{\rm H}$ с помощью уравнений (11). Получим

$$V = \frac{\tilde{H}_R}{1 - \tilde{H}_R} = \frac{\int\limits_{-\infty}^{a} \tilde{f}_{\scriptscriptstyle \rm H}^2 dt + \frac{R}{1 + R} \int\limits_{b}^{\infty} \tilde{f}_{\scriptscriptstyle \rm H}^2 dt}{\int\limits_{a}^{b} \tilde{f}_{\scriptscriptstyle \rm H}^2 dt} = \frac{I_a + \frac{R}{1 + R} (I_\infty - I_b)}{I_b - I_a}$$
(12)

И

$$\widetilde{H}_R = \frac{V}{1+V},\tag{13}$$

где

$$I_p = \int_{-\infty}^{p} \widetilde{f}_{\scriptscriptstyle H}^2 dt, \quad p = a, \ b, \ \infty.$$
(14)

Функция $f_{\rm H}$ имеет спектр в пределах $-\Omega$, Ω и поэтому, как можно показать, может быть представлена рядом

$$\widetilde{f}_{\rm H} = \sum_{n=-\infty}^{\infty} x_n \frac{\sin(\Omega t - n\theta)}{\Omega t - n\theta},\tag{15}$$

где

 $\theta \leqslant \pi$.

Обычно принимают $\theta = \pi$, но в данном случае оказалось, что ряд лучше сходится при $\theta = 2/3\pi$. Это значение θ и было принято.

Для того чтобы f соответствовало оптимальному сигналу, выполнение условий, выраженных формулами (11) и (12), необходимо, но недостаточно. Эти условия будут выполняться также для f, соответствующих максимуму и другим экстремумам H_R . Чтобы получить оптимальный сигнал надо выбрать $\tilde{f}_{\rm H}$ таким, чтобы величина \tilde{H}_R , выражаемая формулами (12) и (13), была минимальной, а затем определить \tilde{f} с помощью уравнений (11). При этом должно быть выполнено условие, что $\tilde{f}_{\rm H}$ является низкочастотной частью f. Но, как можно показать, это условие всегда будет выполняться, если $\tilde{f}_{\rm H}$ представлено рядом (15) и \tilde{f} определено с помощью уравнений (11) и (12).

Таким образом, оптимальный сигнал f должен выражаться уравнениями (11), где $\tilde{f}_{\rm H}$ определяется уравнением (15), в котором x_n соответствует минимуму величины V или, как это следует из (13), минимуму \tilde{H}_R .

Перейдем к отысканию x_k , обеспечивающих минимум V, для чего подставим в (14) выражение (15). Получим

$$I_{p} = \int_{-\infty}^{p} \widetilde{f}_{H}^{2} dt = \int_{-\infty}^{p} \left[\sum_{k=-\infty}^{\infty} x_{n} \frac{\sin(\Omega t - k\theta)}{\Omega t - k\theta} \right]^{2} dt =$$
$$= \sum_{l=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} C_{p}(l, m) x_{l} x_{m}, \quad (16)$$

здесь

$$C_p(l, m) = \int_{-\infty}^{p} \frac{\sin(\Omega t - l\theta)}{\Omega t - l\theta} \frac{\sin(\Omega t - m\theta)}{\Omega t - m\theta} dt$$

Проведя интегрирование, получаем

$$C_p(l, m) = \frac{1}{\Omega} \frac{\cos[(l-m)\theta]}{2(l-m)\theta} [\operatorname{Cin}(2\Omega p - 2l\theta) - \operatorname{Cin}(2\Omega p - 2m\theta)] + \frac{1}{\Omega} \frac{\sin[(l-m)\theta]}{2(l-m)\theta} [\operatorname{Si}(2\Omega p - 2l\theta) + \operatorname{Si}(2\Omega p - 2m\theta) + \pi]$$

при $l \neq m$ и

$$C_p(m,m) = \frac{1}{\Omega} \left[\frac{\cos(2\Omega p - 2m\theta) - 1}{2\Omega p - 2m\theta} + \operatorname{Si}(2\Omega p - 2m\theta) + \frac{\pi}{2} \right],$$
$$C_{\infty}(l,m) = \frac{\pi}{\Omega} \frac{\sin[(l-m)\theta]}{(l-m)\theta}$$

И

$$C_{\infty}(m, m) = \frac{\pi}{\Omega}$$

Мы использовали общепринятые обозначения

$$\operatorname{Cin}(z) = \int_{0}^{z} \frac{1 - \cos(y)}{y} dy, \quad \operatorname{Si}(z) = \int_{0}^{z} \frac{\sin(y)}{y} dy.$$

Для этих функций имеются таблицы и приближенные формулы [2].

Подставляя значение I_p из (16) в (12), получим

$$V = \frac{\sum_{l=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} A(l,m) x_l x_m}{\sum_{l=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} B(l,m) x_l x_m},$$

$$A(l,m) = C_a(l,m) + \frac{R}{1+R} [C_{\infty}(l,m) - C_b(l,m)],$$

$$B(l,m) = C_b(l,m) - C_a(l,m).$$

Метод отыскания x_n , обеспечивающих минимум V, изложен в приложении. \widetilde{H}_R находится из выражения (13). $\widetilde{H}_{\rm x}$ можно отыскать, подставляя в уравнение (2) значение \widetilde{f} из (11),

учитывая (14), получим

$$\widehat{H}_{X} = \frac{\frac{1}{(1+R)^{2}}(I_{\infty} - I_{b})}{\frac{1}{(1-\widetilde{H}_{R})^{2}}(I_{b} - I_{a})}.$$

Далее, на основании (3), (7), (11) и (14)

$$\widetilde{H}_{\rm B} = \frac{\frac{1}{(1-\widetilde{H}_R)^2} (I_b - I_a) + \frac{1}{(1+R)^2} (I_\infty - I_b) - I_\infty}{\frac{1}{(1-\widetilde{H}_R)^2} (I_b - I_a)}.$$

Величины \widetilde{H}_R , \widetilde{H}_x и $\widetilde{H}_{\rm B}$ будут зависеть от R, Ωa и Ωb . Но так как очевидно, что выбор начала отсчета времени не должен влиять на них, то они будут зависеть только от R и $\Omega b - \Omega a = \frac{2\pi}{T_{\rm r}}(b-a) = 2\pi\alpha$, где $T_{\rm r}$ – период граничной частоты, $\alpha = \frac{b-a}{T_{\rm r}}$.

Расчеты

Прямых формул, выражающих зависимость \widetilde{H}_R , \widetilde{H}_x и $\widetilde{H}_в$ от R и α с помощью известных функций, получить не удалось, поэтому были проведены конкретные расчеты для

 $R=\infty$; 5; 2; 1; 0,5; 0,2; 0,1; 0,05 и α = 0,125; 0,25; 0,5; 1; 1.5; 2; 2,5.

При этом были получены следующие результаты.

Таблица 1. Параметры сигналов при $a=-0,125T_{\rm r},\,b=0,125T_{\rm r},\,\alpha=0,25$

R	H_R	$H_{\rm x}$	$H_{\scriptscriptstyle \rm B}$	X_{-1}	X_0	X_1
∞	0,5322	0	0,5322	0,0322	1	0,0322
5	0,5098	0,0041	0,4894	0,0079	1	0,0628
2	0,4830	0,0197	0,4434	-0,0148	1	0,1094
1	0,4496	0,0569	0,3927	0, 0336	1	0,1871
0,5	0,4045	0,1452	0,3319	-0, 0428	1	0,3370
0,2	0,3312	0,4271	0,2458	0,0188	1	0,7293
0,1	0,2718	0,8375	0,1880	0,0366	1	1,2251
0,05	0,2182	1,3818	0,1491	0,1184	1	1,8622

Таблица 2. Параметры сигналов при $a=-0,25T_{\rm r},\,b=0,25T_{\rm r},\,\alpha=0,5$

R	H_R	$H_{\rm x}$	$H_{\scriptscriptstyle \rm B}$	X_{-1}	X_0	X_1	
∞	0,2167	0	0,2167	0,1310	1	0,1310	
5	0,2017	0,0026	0,1885	0,1110	1	0,1561	
2	0,1848	0,0121	0,1606	0,0924	1	0,1942	
1	0,1649	0,0328	0,1322	0,0771	1	0,2571	
0,5	0,1400	0,0770	0,1015	0,0699	1	0,3765	
0,2	0,1036	0,1986	0,0639	0,0896	1	0,6737	
0,1	0,0775	0,3477	0,0427	0,1312	1	1,0169	
0,05	0,0563	0,5148	0,0306	0,1867	1	1,4091	

R	H_R	$H_{\rm x}$	$H_{\scriptscriptstyle \rm B}$	X_{-1}	X_0	X_1	
∞	0,0190	0	0,0190	0,5170	1	0,5170	
5	0,0173	0,0003	0,0159	0,5014	1	0,5353	
2	0,0156	0,0013	0,0130	0,4800	1	0,5619	
1	0,0135	0,0033	0,0103	0,4713	1	0,6030	
0,5	0,0111	0,0072	0,0075	0,4590	1	0,6735	
0,2	0,0079	0,0163	0,0046	0,4545	1	0,8182	
0,1	0,0059	0,0254	0,0033	0,4597	1	0,9475	
0,05	0,0044	0,0339	0,0027	0,4686	1	1,0623	

Таблица 3. Параметры сигналов при $a = -0.5T_{r}, b = 0.5T_{r}, \alpha = 1$

1. При $R = \infty$ в соответствии с (11) f = 0 при t < a и t < b, т.е. весь оптимальный сигнал сосредоточен на участке a, b. В этом случае $\widetilde{H}_{\rm x} = 0$, $\widetilde{H}_{\rm B} = \widetilde{H}_R = H_0$ и \widetilde{f} оказывается симметричной.

Зависимость H_0 от α для этого случая приведена на рис. 1. При $\alpha \to 0, H_0 \to 1$. Это следует и из общих соображений. При $\alpha = 0.25$ примерно 50% энергии сигнала уходит за пределы граничной частоты, при $\alpha = 0.5$ — около 20%, при $\alpha = 1$ — около 2%, при 1.5 — около 0.1%, при 2 — около 1/200%. Дальше H_0 уменьшается быстрее чем в 400 раз при увеличении α на единицу. При не оптимальном сигнале за граничную частоту будет уходить больше энергии. Случай с $\widetilde{H}_{\rm x} = 0$ был уже рассмотрен с помощью мало распространенных удлиненных волновых функций в работе [3] и там же приведены значения H_0 для $\alpha = \frac{1}{4\pi}; \frac{1}{2\pi}; \frac{1}{\pi}; \frac{2}{\pi}$. Они согласуются с рис. 1. Приближенно \widetilde{f} для этого случая может быть представлена с помощью так называемого «окна Кайзера» [4].

2. При R конечном сигнал не кончается в момент b, $H_x \neq 0$ и величина $\widetilde{H}_{\rm B}$ уменьшается с увеличением $\widetilde{H}_{\rm X}$. Результаты расчета приведены на рис. 2. В этом случае оказалось удобным по оси абсцисс откладывать величину $\widetilde{H}_{\rm X}/H_0$, а по оси ординат $\widetilde{H}_{\rm B}/H_0$. На рисунке приводятся кривые для значений $\alpha = 0.25$; 0.5; 1. Для значений $\alpha = 1.5$ и 2, чтобы не усложнять рисунок, приводятся отдельные точки.

Как видно из рис. 2, наличие даже небольшого «хвоста» может существенно уменьшить $\widetilde{H}_{\rm B}$. Так, при $\alpha = 1$ и $\widetilde{H}_{\rm x} = 0.04$, а также при $\alpha = 2$ и $\widetilde{H}_{\rm x} = 10^{-4}$ величина $\widetilde{H}_{\rm B}$ составляет примерно 1/8 от H_0 .

Может показаться, что пропуская оптимальный сигнал через фильтр, обладающий затуханием на частотах, больших чем Ω , мы уменьшим $H_{\rm B}$ и получим сигнал лучше чем оптимальный. Это не так. При таком фильтре должно возрасти $H_{\rm X}$, и $H_{\rm B}$ не будет меньше, чем у оптимального сигнала при этом новом $H_{\rm X}$.

Сигналы с минимальной энергией вредного спектра

R	H_R	$H_{\rm x}$	Нв	X_{-2}	X_{-1}	X_0	X_1	X_2
∞	1109×10^{-6}	0	1109×10^{-6}	0,1219	0,7131	1	0,7131	0,1219
5	$1101 \times {}^{-6}$	$17 imes 10^{-6}$	928×10^{-6}	0,1182	0,7025	1	0,7253	0,1255
2	$905 imes 10^{-6}$	$75 imes10^{-6}$	$755 imes 10^{-6}$	0,1137	0,6913	1	0,7420	0,1298
1	784×10^{-6}	$195 imes 10^{-6}$	588 imes 10-6	0,1076	0,6796	1	0,7666	0,1355
0,5	641×10^{-6}	427×10^{-6}	$427 imes 10^{-6}$	0,0988	0,6675	1	0,8059	0,1440
0,2	453×10^{-6}	939×10^{-6}	$265 imes 10^{-6}$	0,0839	0,6540	1	0,8777	0,1613
0,1	$337 imes 10^{-6}$	1468×10^{-6}	$190 imes 10^{-6}$	0,0728	0,6436	1	0,9342	0,1824
0,05	249×10^{-6}	2163×10^{-6}	141×10^{-6}	0,0638	0,6274	1	0,9800	0,2163

Таблица 4. Параметры сигналов при $a = -0.75T_{\rm r}, b = 0.75T_{\rm r}, \alpha = 1.5$

При расчетах в ряде (15) бралось до 9 членов — большего количества брать было нецелесообразно, так как это приводило лишь к незначительному уменьшению $\widetilde{H}_{\rm B}$, меньшему, чем точность расчета. Чтобы получить сигнал, у которого $\widetilde{H}_{\rm B}$ всего лишь на несколько процентов больше чем у оптимального, оказалось достаточно при $\alpha \leq 1$ трех членов ряда (15), для $\alpha = 1.5$ — пяти и для $\alpha = 2$ — семи членов. Эта зависимость станет понятной, если учесть, что при выбранном у нас $\theta = (2/3)\pi$ члены ряда (15) сдвинуты друг относительно друга на $T_{\rm r}/3$.

R	H_R	$H_{\rm x}$	$H_{\scriptscriptstyle \rm B}$	X_{-3}	X_{-2}	X_{-1}	X_0	X_1	X_2	X_3
∞	$57 imes 10^{-6}$	0	$57 imes 10^{-6}$	0,0141	0,2550	0,7242	1	0,7242	0,2550	0,0141
5	$52 imes 10^{-6}$	$1 imes 10^{-6}$	$48 imes 10^{-6}$	0,0139	0,2501	0,7195	1	0,7330	0,2596	0,0151
2	$47 imes 10^{-6}$	$4 imes 10^{-6}$	$39 imes 10^{-6}$	0,0132	0,2429	0,7110	1	0,7445	0,2668	0,0164
1	41×10^{-6}	$10 imes 10^{-6}$	31×10^{-6}	0,0125	0,2344	0,7017	1	0,7597	0,2758	0,0181
0,5	$33 imes 10^{-6}$	$22 imes 10^{-6}$	$23 imes 10^{-6}$	0,0120	0,2228	0,6908	1	0,7826	0,2889	0,0207
0,2	$24 imes 10^{-6}$	$48 imes 10^{-6}$	$14 imes 10^{-6}$	0,0115	0,2024	0,6720	1	0,8251	0,3157	0,0254
0,1	$17 imes 10^{-6}$	$74 imes 10^{-6}$	$10 imes 10^{-6}$	0,0111	0,1890	0,6562	1	0,8536	0,3400	0,0280
0,05	$13 imes 10^{-6}$	114×10^{-6}	$7 imes 10^{-6}$	0,0099	0,1749	0,6302	1	0,8798	0,3760	0,0293

Таблица 5. Параметры сигналов при $a = -T_r$, $b = T_r$, $\alpha = 2$

В таблицах 1–5 приведены параметры сигналов, близких к оптимальному. Эти параметры были получены методом, изложенным в приложении. Как можно показать, полученные при этом значения $H_{\rm B}$ несколько превосходят истинные величины, однако они отличаются от $\widetilde{H}_{\rm B}$ всего на несколько процентов.

На рис. 3 приведен пример оптимального сигнала для параметров $\alpha = 0.5, R = \infty$. Для него $H_{\rm x} = 0, H_{\rm B} = 0.2167$. На рис. 4 пример оптимального сигнала для $\alpha = 0.5, R = 0.5$. Для него $H_{\rm x} = 0.0770, H_{\rm B} = 0.1015$.

Полученные результаты можно использовать для выяснения, насколько сигналы в конкретных системах близки к оптимальным и насколько в них теоретически можно уменьшить энергию вредного спектра.

Приложение

Найдем минимум выражения

$$V = \frac{\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} A_{nm} x_n x_m}{\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} B_{nm} x_n x_m}$$
(Π.1)

методом последовательных приближений. Будем менять только x_i , оставляя остальные x_k постоянными. Выражение (П.1) может быть записано в виде

$$V = \frac{a_2 + 2a_1x_i + a_0x_i^2}{b_2 + 2b_1x_i + b_0x_i^2},$$

где

$$a_{2} = \sum_{n \neq i} \sum_{m \neq i} A_{nm} x_{n} x_{m}; \qquad a_{1} = \sum_{n \neq i} A_{ni} x_{n}; \qquad a_{0} = A_{ii};$$

$$b_{2} = \sum_{n \neq i} \sum_{m \neq i} B_{nm} x_{n} x_{m}; \qquad b_{1} = \sum_{m \neq i} B_{ni} x_{n}; \qquad b_{0} = B_{ii}.$$

Здесь $\sum_{\substack{n \neq i \\ m \neq i}}$ обозначает суммирование по всем n, кроме n = i. Аналогично $\sum_{\substack{m \neq i \\ m \neq i}}$. Таким образом, слагаемые сn = i и m = i при суммировании пропускаются и поэтому величины a_2 , a_1 , a_0 , b_2 , b_1 , b_0 не меняются при изменении x_i .

Приравнивая нулю производную V по x_i , находим значения x_i , дающие минимум V при изменении x_i и постоянных x_k при $k \neq i$. Нахождение x_i сводится при этом, как легко показать, к решению квадратного уравнения.

На основании сказанного, отыскание x_i , соответствующих минимуму V, и величины этого минимума сводилось к тому, что находились описанным методом по очереди x_i , дающие минимум V. При этом Vкаждый раз уменьшалось. Процедура проводилась до тех пор, пока x_i и V не перестали меняться. Очевидно, полученное значение V является минимальным, а значения x_i — соответствующими этому минимуму.

Порядок выбора *i* был следующий. Бралось a = -b, $x_0 = 1$, остальные $x_i = 0$. Затем брались *i* в следующем порядке: i = 1, -1, 1, -1, 1, ..., пока *V* перестало уменьшаться. После этого брались i = 2, -2, 1, -1, 2, -2, 1, -1, 2, ...до тех пор, пока *V* снова не перестало уменьшаться. Затем брались i = 3, -3, 1, -1, 2, -2, 3, -3, 1, ...и т. д. Эта

процедура продолжалась до тех пор, пока увеличение i уменьшало V. Полученное значение V является минимально возможным.

Следует отметить, что порядок выбора *i* не влияет на конечный результат.

Если бы выражение (П.1) могло иметь несколько минимумов с различными значениями, то мы могли бы при принятой процедуре прийти не к наименьшему минимуму. Однако в случае, когда знаменатель выражения (П.1) при любых, не равных одновременно нулю, x_n положителен, что у нас имеет место, то, как можно показать, все минимальные значения выражения (П.1) должны равняться между собой.

Список литературы

- 1. Возенкрафт Дж., Джекобс И. Теоретические основы техники связи. М.: Мир, 1969.
- 2. Справочник по специальным функциям. М.: Наука, 1979.
- 3. Landau H.J., Pollac H.O. // The Bell System Technical Journal. 1961. V. 40. № 1.
- 4. Голд В., Райзер Н. Цифровая обработка сигналов. М.: Сов. радио, 1973.

Поступила в редакцию 30.01.96 г.